Неповні квадратні рівняння

Згідно з означенням, перший коефіцієнт квадратного рівняння не може дорівнювати нулю, якщо інші коефіцієнти дорівнюють нулю то квадратне рівняння перетворюється у лінійне рівняння, яке називають неповним.
Якщо і другий коефіцієнт, і вільний член дорівнюють нулю, отримаємо рівняння вигляду ax2 = 0. Воно має один корінь, який дорівнює нулю. Якщо вільний член дорівнює нулю, а другий коефіцієнт нулю не дорівнює, отримаємо рівняння вигляду ax2 + bx = 0. Для його розв’язання виносимо за дужки x, тоді хоча б один із множників — x або той, що залишився в дужках ax + b — дорівнює нулю. Рівняння має два корені: x = 0  або . 
Якщо другий коефіцієнт дорівнює нулю, а вільний член не дорівнює нулю, отримаємо рівняння вигляду ax2 + c = 0. Перенесемо вільний член до правої частини рівняння і поділимо на перший коефіцієнт. Таке рівняння не має коренів, якщо його права частина від’ємна, тобто якщо перший коефіцієнт і вільний член мають однакові знаки. Якщо права частина одержаного рівняння невід’ємна, тобто перший коефіцієнт і вільний член мають різні знаки, то рівняння має два корені.

Немає коментарів:

Дописати коментар